Application of a laser-based spectrometer for continuous insitu measurements of stable isotopes of soil CO₂ in calcareous and acidic soils

J. Joseph¹, C. Külls², M. Arend³, M. Schaub¹, F. Hagedorn¹, A. Gessler¹ and M. Weiler⁴

[1] {Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland}
[2] {Laboratory for Hydrology and International Water Management, University of Applied Sciences Lübeck, Germany}
[3] {Physiological Plant Ecology (PPE), Faculty of Integrative Biology, University of Basel, Switzerland}
[4] {Chair of Hydrology, Faculty of Environment and Natural resources, University of Freiburg, Germany}

Correspondence to: J. Joseph (jobin.joseph@wsl.ch)
Abstract

The short-term dynamics of carbon and water fluxes across the soil-plant-atmosphere continuum are still not fully understood. One important constraint is the lack of methodologies that enable simultaneous measurements of soil CO\textsubscript{2} concentration and respective isotopic composition at a high temporal resolution for longer periods of time. \(\delta^{13}\)C of soil CO\textsubscript{2} can be used to derive information on the origin and physiological history of carbon and \(\delta^{18}\)O in soil CO\textsubscript{2} aids to infer interaction between CO\textsubscript{2} and soil water. We established a real-time method for measuring soil CO\textsubscript{2} concentration, \(\delta^{13}\)C and \(\delta^{18}\)O values across a soil profile at higher temporal resolutions (0.05 – 0.1 hz) using an Off-Axis Integrated Cavity Output Spectrometer (OA-ICOS). We also developed a calibration method correcting for the sensitivity of the device against concentration-dependent shifts in \(\delta^{13}\)C and \(\delta^{18}\)O values under highly varying CO\textsubscript{2} concentration. The deviations of measured data were modelled, and a mathematical correction model was developed and applied for correcting the shift. By coupling an OA-ICOS with hydrophobic but gas permeable membranes placed at different depths in acidic and calcareous soils, we investigated the contribution of abiotic and biotic components to total soil CO\textsubscript{2} release. We found that in the calcareous Gleysoil, CO\textsubscript{2} originating from carbonate dissolution contributed to the total soil CO\textsubscript{2} concentration at detectable degrees potentially due to CO\textsubscript{2} evasion from groundwater. \(^{13}\)C-CO\textsubscript{2} of top soil at the calcareous soil site was found to be reflecting \(\delta^{13}\)C values of atmospheric CO\textsubscript{2} and \(\delta^{13}\)C of top soil CO\textsubscript{2} at the acidic soil site was representative of the biological respiratory processes. \(\delta^{18}\)O values of CO\textsubscript{2} in both sites reflected the \(\delta^{18}\)O of soil water across most of the depth profile, except for the 80 cm depth at the calcareous site where a relative enrichment in \(^{18}\)O was observed.

Key words: \(\delta^{13}\)C, \(\delta^{18}\)O, OA-ICOS, hydrophobic/gas permeable membrane.
1 Introduction

Global fluxes of CO$_2$ and H$_2$O are two major driving forces controlling earth's climatic systems. To understand the prevailing climatic conditions and predict climate change, accurate monitoring and modeling of these fluxes are essential (Barthel et al., 2014; Harwood et al., 1999; Schär et al., 2004). Soil respiration, the CO$_2$ flux released from soil surface to the atmosphere as a result of microbial and root respiration (heterotrophic and autotrophic) is the second largest terrestrial carbon flux (Bond-Lamberty and Thomson, 2010). The long-term dynamics of CO$_2$ release on a seasonal scale are reasonably well understood (Satakhun et al., 2013), whereas less information on CO$_2$ dynamics and isotopic composition are available for short-term variations on a diurnal scale. The lack of proper understanding of the diurnal fluctuations in soil CO$_2$ release might introduce uncertainty in estimating the soil carbon budget and the CO$_2$ fluxes to the atmosphere. The isotopic composition of soil CO$_2$ and its diel fluctuation can be a critical parameter for the partitioning of ecosystem gas exchange into its components (Bowling et al., 2003; Mortazavi et al., 2004) and for disentangling plant and ecosystem processes (Werner and Gessler, 2011). By assessing δ^{13}C of soil CO$_2$, it is possible to identify the source for CO$_2$ (Kuzyakov, 2006) and the coupling between photosynthesis and soil respiration when taking into account post-photosynthetic isotope fractionation (Werner et al., 2012; Wingate et al., 2010). δ^{13}C soil CO$_2$ reflects, however, not only microbial and root respiration but also abiotic sources from carbonate weathering (Schindlbacher et al., 2015).

Soil water imprints its δ^{18}O signature on soil CO$_2$ as a result of isotope exchange between H$_2$O and CO$_2$ (aqueous). The oxygen isotopic exchange between CO$_2$ and soil water is catalyzed by microbial carbonic anhydrase (Sperber et al., 2015; Wingate et al., 2009). Thus, soil CO$_2$ can give information on the isotopic composition of both soil water resources and carbon sources. The oxygen isotopic composition of plant-derived CO$_2$ is both, a tracer of photosynthetic and respiratory CO$_2$ and gives additional quantitative information on the water cycle in terrestrial ecosystems (Francey and Tans, 1987). To better interpret the δ^{13}C and δ^{18}O signals of atmospheric CO$_2$, the isotopic composition and its variability of the different sources need to be better understood (Werner et al., 2012; Wingate et al., 2010).

The conventional method to estimate δ^{13}C and δ^{18}O of soil CO$_2$ efflux is by using two end-member mixing models of atmospheric CO$_2$ and CO$_2$ produced in the soil (Keeling, 1958). The conventional methods for sampling soil produced CO$_2$ are chamber based (Bertolini et al., 2006; Torn et al., 2003), 'mini-tower' (Kayler et al., 2010; Mortazavi et al., 2004), and soil gas well (Breecker and Sharp, 2008; Oerter and Amundson, 2016) based methods. In conventional methods, air sampling is done at specific time intervals, and δ^{13}C and δ^{18}O are analyzed using Isotope Ratio Mass Spectrometry (IRMS) (Oblsson et al., 2005). Such offline methods have several disadvantages like high sampling costs, excessive time consumption for sampling and analysis, increased sampling error and low temporal resolution. Kammer et al. (2011), showed how error-prone the conventional methods could be while calculating δ^{13}C and δ^{18}O (up to several per mil when using chamber and mini tower-based methods) (Kammer et al., 2011). In chamber-based systems, non-steady-state conditions may arise within the chamber due to increased CO$_2$ concentrations which in turn hinders the diffusion of 12CO$_2$ more strongly than that of heavier 13CO$_2$ (Risk and Kellman, 2008). Moreover, it has been found that δ^{18}O of CO$_2$ inside a chamber is significantly influenced by the δ^{18}O of the surface soil water as an equilibrium isotopic exchange happens during the upward diffusive movement of soil CO$_2$ (Mortazavi et al., 2004). The advent of laser-based isotope spectroscopy has enabled cost-effective, simple, and high precision real-time measurements of δ^{13}C and δ^{18}O in CO$_2$ (Kammer et al., 2011; Kerstel
and Gianfrani, 2008). This technique opened up new possibilities for faster and reliable measurements of stable isotopes in situ, based on the principle of light absorption, using laser beams of distinct wavelengths in the near and mid-infrared range (Bowling et al., 2003). Recently, several high frequency online measurements of δ\(^13\)C and δ\(^18\)O of soil CO\(_2\) and H\(^2\)O of soil water vapor across soil depth profiles were reported by coupling either hydrophobic but gas permeable membranes (installed at different depths in soil) or automated chamber systems with laser spectrometers (Bowling et al., 2015; Jochheim et al., 2018; Stumpp et al., 2018). Such approaches enable detection of vertical concentration profiles, temporal dynamics of soil CO\(_2\) concentration and isotopic signature of soil CO\(_2\) across different soil layers, thus aiding to identify and quantify various sources of CO\(_2\) across the depth profile.

In 1988, O’Keefe and Deacon introduced the Cavity Ring-Down Spectroscopy (CRDS) for measuring the isotopic ratio of different gaseous species based on laser spectrometry (O’Keefe and Deacon, 1988). With the laser-based spectrometry techniques, measuring sensitivities up to parts per trillion (ppt) concentrations are achieved (von Basum et al., 2004; Peltola et al., 2012). In CRDS, the rate of change in the absorbed radiation of laser light that is temporarily “trapped” within a highly reflective optical cavity is determined. This is achieved using resonant coupling of a laser beam to the optical cavity and active locking of laser frequency to cavity length (Parameswaran et al., 2009). Another well-established technique similar to CRDS is Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS). It is based on directing lasers with narrowband and continuous-wave in an off-axis configuration to the optical cavity (Baer et al., 2002).

Even though OA-ICOS can measure concentration and isotope signature of various gaseous species at high temporal resolution, we found pronounced deviations in δ\(^13\)C and δ\(^18\)O measurements from the absolute values when measured under changing CO\(_2\) concentrations. So far to our knowledge, no study has been made available detailing the calibration process of OA-ICOS CO\(_2\) analyzers correcting for fluctuations of both δ\(^13\)C and δ\(^18\)O values under varying CO\(_2\) concentrations. Most of the OA-ICOS CO\(_2\) analyzers are built for working under stable CO\(_2\) concentrations, so that periodical calibration against in-house gas standards at a particular concentration is sufficient. However, as there are pronounced gradients in CO\(_2\) levels in soils (Maier and Schack-Kirchner, 2014), CO\(_2\) concentration depending shifts in measured isotopic values have to be addressed and corrected. Such calibration is, however, also relevant for any other OA-ICOS application with varying levels of CO\(_2\) (e.g., in chamber measurements). Hence the first part of this work comprises the establishment of a calibration method for OA-ICOS. The second part describes a method for online measurement of CO\(_2\) concentrations and stable carbon and oxygen isotope composition of CO\(_2\) in different soil depths by coupling OA-ICOS with gas permeable hydrophobic tubes (Membrane tubes, Accurel®). The use of these tubes for measuring soil CO\(_2\) concentration (Gut et al., 1998) and δ\(^13\)C of soil CO\(_2\) (Parent et al., 2013) has already been established, but the coupling to an OA-ICOS system has not been performed, yet.

We evaluated our measurement system by assessing and comparing the concentration, δ\(^13\)C and δ\(^18\)O of soil CO\(_2\) for a calcareous and an acidic soil system. The primary foci of this study are to (1) introduce OA-ICOS in online soil CO\(_2\) concentration and isotopic measurements; (2) calibrate the OA-ICOS to render it usable for isotopic analysis carried out under varying CO\(_2\) concentrations; and (3) analyze the dynamics of δ\(^13\)C and δ\(^18\)O of soil CO\(_2\) at different soil depths in different soil types at a higher temporal resolution.
2 Materials and Methods

2.1 Instrumentation

The concentration, δ^{13}C and δ^{18}O values of CO$_2$ were measured with an OA-ICOS, as described in detail by (Baer et al., 2002; Jost et al., 2006). In this study, we used an OA-ICOS, (LGR-CCIA 36-d) manufactured by Los Gatos Research Ltd, San-Francisco, USA. LGR-CCIA 36-d measures CO$_2$ concentration, and δ^{13}C and δ^{18}O values at a frequency up to 1 Hz. The operational CO$_2$ concentration range was 400 to 25,000 ppm. Operating temperature range was $+10 - +35^\circ$C, and sample temperature range (Gas temperature) was between -20°C and 50°C. Recommended inlet pressure was < 0.0689 MPa. The multiport inlet unit, an optional design that comes along with LGR-CCIA 36-d, had a manifold of 8 digitally controlled inlet ports and one outlet port. It rendered the user with an option of measuring eight different CO$_2$ samples at the desired time interval. Three standard gases with distinct δ^{13}C and δ^{18}O values were used for calibration in this study (See Supplementary Table.1). The standard gases used in this study were analyzed for absolute concentration and respective δ^{13}C and δ^{18}O values. δ-values are expressed based on Vienna Pee Dee Belemnite (VPDB)-CO$_2$ scale, and were determined by high precision IRMS analysis.

2.2 Calibration setup and protocol

We developed a two-step calibration procedure to; a) correct for concentration-dependent errors in isotopic data measurements, and b) correct for deviations in measured δ-values from absolute values due to offset (other than concentration-dependent error) introduced by the laser spectrometer. Also, we used Allan variance curves for determining the time interval to average the data (Nelson et al., 2008) to achieve the highest precision that can be offered by LGR-CCIA 36-d (Allan et al., 1997).

The first part of our calibration methodology was developed to correct for the concentration-dependent error observed in preliminary studies for δ^{13}C and δ^{18}O values measured using OA-ICOS. Such a calibration protocol was used in addition to the routine three-point calibration performed with in-house CO$_2$ gas standards of known δ^{13}C and δ^{18}O values. We developed a CO$_2$ dilution set up (See Figure. 1), with which each of the three CO$_2$ standard gases was diluted with synthetic CO$_2$ free air (synth-air) to different CO$_2$ concentrations. By applying a dilution series, we identified the deviation of the measured (OA-ICOS) from the absolute (IRMS) δ^{13}C and δ^{18}O values depending on CO$_2$ concentration (See Figure.4). The δ^{13}C and δ^{18}O values of our inhouse calibration gas standards were measured via cryo-extraction and Dual Inlet IRMS. δ^{13}C, and δ^{18}O of the standard gases (See Supplementary Table.1) across a wide range of CO$_2$ concentrations are measured using OA-ICOS. The deviation of the measured δ^{13}C, and δ^{18}O from absolute values with respect to changing CO$_2$ concentrations was mathematically modeled and later used for data correction (See Figure.5). A standard three-point calibration was then applied correcting for concentration-dependent errors (See Figure.7). The standards used covered a wide range of δ^{13}C and δ^{18}O, including the values observed in the field of application.

Standard gases were released to a mass flow controller (ANALYT-MTC, series 358, MFC1) after passing through a pressure controller valve (See Figure. 1) with safety bypass (TESCOM, D43376-AR-00-X1-S, V5). A Swagelok filter, ((Stainless Steel All-Welded In-Line Filter (Swagelok, SS-4FWS-05; F1)) was installed at the inlet of the
flow controller (ANALYT-MTC, series 358; MFC1). Synth-air was released and passed to another flow controller (ANALYT-MTC, series 358; MFC2) through a Swagelok filter (F2 in Figure. 1). CO₂ and synth-air leaving the flow controllers (MFC1 and MFC2 respectively) were then mixed and drawn through a ¼" Teflon tube (P8), which was kept in a gas thermostat unit (See Figure.1). The thermostat unit contained, a) a thermostat-controlled water bath (Kottermann, 3082) and b) an Isotherm flask containing liquid nitrogen. The water bath was used to raise the temperature above room temperature and also to bring the temperature down to +5°C, by placing ice packs in the water bath. To reach low temperatures (-20°C), we immersed the tubes in the isotherm flask filled with liquid N₂.

Leaving the thermostat unit, the gas was directed to the multiport inlet unit of the OA-ICOS. By using the thermostat unit, we introduced a shift in the reference gas temperature and the aim was to test the temperature sensitivity of the OA-ICOS in measuring δ¹³C and δ¹⁸O values. The third CO₂ standard gas (which is used for validation) was produced by mixing the other two gas standards in equal molar proportions in a 10L volume plastic bag with inner aluminum foil coating and welded seams (CO₂ mix: Linde PLASTIGAS®) under 0.03 MPa pressure by diluting to the required concentration using synth-air. The mixture was then temperature adjusted and delivered to the multiport inlet unit (MIU) by using a ¼" Teflon tube (P10). From the multiport inlet unit, calibration gases were delivered into the OA-ICOS for measurement using a ¼" Teflon tube (P9) at a pressure < 0.0689 MPa, with a flow rate of 500 mL/min. The gas leaving the OA-ICOS through the exhaust was fed back to the ¼" Teflon tube (P8) by using a Swagelok pipe Tee (Stainless Steel Pipe Fitting, Male Tee, ¼", Male NPT), intersecting P8 line before entering the thermostat unit. Thus, the gas fed was looped in the system until steady values were reported by the OA-ICOS based on CO₂ [ppm], δ¹³C and δ¹⁸O measurements. CO₂ gas standards were measured at 27 different CO₂ concentration levels ranging between 400 and 25,000 ppm. Every hour before sampling, synth-air gas was flushed through the system to remove CO₂ to avoid memory effects. The calibration gases were measured in a sequence one after the other four times. During each round of measurement, every calibration gas was diluted to different concentrations of CO₂ (400 - 25,000 ppm) and the respective isotopic signature and concentration were determined. For each measurement of δ¹³C and δ¹⁸O at a given concentration, the first 50 readings were taken and averaged to get maximum precision for δ¹³C and δ¹⁸O measurements. When switching between different calibration gases at the multiport inlet unit, synth-air was purged through the systems for 30 seconds to avoid cross-contamination.

2.3 Experimental Sites

In situ experiments were conducted to measure δ¹³C, δ¹⁸O and concentrations of soil CO₂ in two different soil types (calcareous and acidic soil). The measurements in a calcareous soil were conducted during June 2014 in cropland cultivated with wheat (Triticum aestivum) in Neuried, a small village in the Upper Rhine Valley in Germany situated at 48°26'55.5"N, 7°47'20.7"E, 150 m a.s.l. The soil type described as calcareous fluvic Gleysol developed on gravel deposits in the upper Rhine valley. Soil depth was medium to deep, with high contents of coarse material (> 2 mm) up to 30 - 50%. Mean soil organic carbon (SOC) content was 1.2 - 2% and, SOC stock
was ranging between 50 and 90 t/ha. The average pH was found to be 8.6. The study site receives an annual rainfall of 810 mm and has a mean annual temperature of 12.1°C.

In situ measurements in an acidic soil were conducted by the end of July 2014 in the model ecosystem facility (MODOEK) of the Swiss Federal Research Institute WSL, Birmensdorf, Switzerland (47°21'48" N, 8°27'23" E, 545 m a.s.l.). The MODOEK facility comprises 16 model ecosystems, belowground split into two lysimeters with an area of 3 m² and a depth of 150 cm. The lysimeters used for the present study were filled with acidic (haplic Alisol) forest soil and planted with young beech trees (Arend et al., 2016). The soil pH was 4.0 and a total SOC content of 0.8% (Kuster et al., 2013).

2.4 Experimental Setup

The OA-ICOS was connected to gas permeable, hydrophobic membrane tubes (Accurel® tubings, 8 mm OD) of 2 m length, placed horizontally in the soil at different depths. Tubes were laid in six different depths (4, 8, 12, 17, 35, and 80 cm) for calcareous soil and three (10, 30, and 60 cm) for acidic soil.

Technical details of the measurement setup are shown in Figure 2. Both ends of the membrane tubes were extended vertically upwards reaching the soil top by connecting them to gas impermeable Synflex® tubings (8 mm OD) using Swagelok tube fitting union (Swagelok: SS-8M0-6, 8 mm Tube OD). One end of the tubing system was connected to a solenoid switching valve (Bibus: MX-758.8E3C3KK) and by using a stainless-steel reducing union (Swagelok: SS-8M0-6-6M), to the outlet of the LGR CCIA 36-d by using ¼" Teflon tubing. The other end was connected via the multiport inlet unit to the gas inlet of the LGR CCIA 36-d.

This way, a loop was created in which the soil CO₂ drawn into the OA-ICOS was circulated back through the tubes and in and out of the OA-ICOS and measured until a steady state was reached. We experienced no drop in cavity pressure while maintaining a closed loop (See Supplementary Figure S2). Each depth was selected and continuously measured for 6 minutes at specified time intervals by switching to defined depths at the multiport inlet unit and also at the solenoid valve.

3 Results and Discussion

3.1 Instrument calibration and correction

The highest level of precision obtained for δ¹³C and δ¹⁸O measurements at the maximum measuring frequency (1Hz) were determined by using Allan deviation curves (see Figure 3). Maximum precision of 0.022‰ for δ¹³C was obtained when the data were averaged over 256 seconds, and for δ¹⁸O, 0.077‰ for the same averaging interval as for δ¹³C.

To correct for CO₂ concentration-dependent errors in raw δ¹³C and δ¹⁸O data, we analysed data obtained from the OA-ICOS to determine the sensitivity of δ¹³C and δ¹⁸O measurements against changing concentrations of CO₂. We observed a specific pattern of deviance in the measured isotopic data from the absolute values (both for δ¹³C and
\(^{\delta}\)O across CO\(_2\) concentration ranging from 25,000 to 400 ppm (See Figure 4). Uncalibrated \(^{\delta}\)C and \(^{\delta}\)O measurements showed a standard deviation of 6.44 % and 6.802 % respectively, when measured under changing CO\(_2\) concentrations.

The dependency of \(^{\delta}\)C and \(^{\delta}\)O values on the CO\(_2\) concentration was compensated by using a nonlinear model. The deviations (Diff-\(\delta \)) of the measured delta values (\(\delta_{\text{OA-ICOS}} \)) from the absolute value of the standard gas (\(\delta_{\text{HRMS}} \)) at different concentrations of CO\(_2\) were calculated (Diff-\(\delta = \delta_{\text{OA-ICOS}} - \delta_{\text{HRMS}} \)). Several mathematical models were then fitted on Diff-\(\delta \) as a function of changing CO\(_2\) concentration (See figure 5). The mathematical model with the best fit for Diff-\(\delta \) data was selected using Akaike information criterion corrected (AICc) (Glatting et al., 2007; Hurvich and Tsai, 1989; Yamaoka et al., 1978). The non-linear model fits applied for Diff-\(^{\delta}\)C, and Diff-\(^{\delta}\)O measurements are given in Tables 1 & 2, respectively. For Diff-\(^{\delta}\)C, a three-parameter exponential model fitted best with \(r^2 = 0.99 \) (see Table 3 for the values of the parameters, see supplementary Figure S3 (a) for model residuals), and a three-parameter power function model (see Table 2) with \(r^2 = 0.99 \) showed the best fit for Diff-\(^{\delta}\)O (see Table 3 for the values of the parameters, see supplementary Figure S3 (b) for model residuals). The best fit was then introduced into the measured isotopic data (\(^{\delta}\)C and \(^{\delta}\)O) and corrected for concentration-dependent errors (See figure. 6). After correction, the standard deviation of \(^{\delta}\)C was reduced to 0.08 % and of \(^{\delta}\)O to 0.09 % for all measurements across the whole CO\(_2\) concentration range.

After correcting the measured \(^{\delta}\)C and \(^{\delta}\)O values for the CO\(_2\) concentration-dependent deviations, a three-point calibration (Sturm et al., 2012) was made by generating linear regressions with the concentration corrected \(^{\delta}\)C and \(^{\delta}\)O values against absolute \(^{\delta}\)C and \(^{\delta}\)O values (See Figure 7, see supplementary Figure S4 for linear regression residuals). Using the linear regression lines, we were able to measure the validation gas standard with standard deviations of 0.0826 % for \(^{\delta}\)C and 0.0941 % for \(^{\delta}\)O.

For the LGR CCIA 36-d, we found that routine calibration (Correction for concentration-dependent error plus three-point calibration) was necessary for obtaining the required accuracy, in particular under fluctuating CO\(_2\) concentrations. The LGR CCIA-36d offers an option for calibration against a single standard, a feature which was already in place in a predecessor model (CCIA DLT-100) (Guillon et al., 2012). This internal calibration is sufficient, when LGR CCIA-36d is operated only under stable CO\(_2\) concentrations. To correct for the concentration dependency, we introduced mathematical model fits, which corrected for the deviation pattern found for both \(^{\delta}\)C and \(^{\delta}\)O. We assume that these deviations are instrument specific and the fitting parameters need to be adjusted for every single device. Experiments conducted to investigate the influence of external temperature fluctuations on OA-ICOS measurements did not show any significant changes in the temperature inside the optical cavity of OA-ICOS (See Supplementary Figure S1). The previous version of the Los Gatos CCIA was strongly influenced by temperature fluctuations during sampling (Guillon et al., 2012). The lack of temperature dependency as observed here with the most recent model can be mostly due to the heavy insulation provided with the system, which was not found in the older models.

Guillon et al. (2012) found a linear correlation between CO\(_2\) concentration and respective stable isotope signatures with a previous version of the Los Gatos CCIA CO\(_2\) stable isotope analyser. In our experiments with the OA-ICOS, best fitting correlation between CO\(_2\) concentration and \(^{\delta}\)C and \(^{\delta}\)O measurements were exponential and power
functions, respectively. We assume that measurement accuracy is influenced by the number of CO₂ molecules present inside the laser cavity of the particular laser spectrometer as we observed large standard deviation in isotopic measurements at lower CO₂ concentrations. This behavior of an OA-ICOS can be expected as it functions by sweeping the laser along an absorption spectrum, measuring the energy transmitted after passing through the sample. Therefore, energy transmitted is proportional to the gas concentration in the cavity. The laser absorbance is then determined by normalizing against a reference signal, finally calculating the concentration of the sample measured by integrating the whole spectrum of absorbance (O'Keefe et al., 1999).

3.2 Variation in soil CO₂ concentration, carbon and oxygen isotope values

Figures 9 and 10 show the CO₂ concentration, δ¹³C and δ¹⁸O measurements of soil CO₂ in the calcareous as well as in the acidic soil across the soil profile with sub-daily resolution and as averages for the day, respectively. We observed an increase in the CO₂ concentration across the soil depth profile for both, the calcareous and the acidic soil. Moreover, there were rather contrasting δ¹³C values across the profile for the two soil types. In the calcareous soil, CO₂ was relatively enriched in ¹³C in the surface soil (4 cm) as compared to the 8 cm depth. Below 8 cm down to 80 cm depth, we found an increase in δ¹³C values. At 80 cm depth, the δ¹³C in soil CO₂ ranged between -7.15 and -3.35 ‰ (See Figure. 9) with a daily average of -6.19 ± 1.45 ‰ (See Figure. 10) and hence clearly above atmospheric values (= -8.0 ‰). For δ¹⁸O values of calcareous soil, the depth profile showed no specific pattern except for the δ¹⁸O values at 80 cm depth was found to be less negative than the values of the other depths. The δ¹⁸O value in the top 4 cm was found to be slightly more enriched that the 8 cm depth and between 8 cm – 35 cm, δ¹⁸O values showed little variation relative to each other. For the sub-daily measurements, we observed a sharp decline in δ¹⁸O values at around 02:00, which is also observed but less pronounced for δ¹³C signal. We assume that, the reason for such aberrant values is rather a technical issue than a biological process. It could be due to the fact that the internal pump in the OA-ICOS was not taking adequate amount of gas into the optical cavity, thereby creating a negative pressure inside the cavity resulting in the observed aberrant values. The patterns observed for the δ¹³C values of CO₂ in the calcareous soil with ¹³C enrichment in deeper soil layers can be explained by a substantial contribution of CO₂ from abiotic origin to total soil CO₂ release as a result of carbonate weathering and subsequent out-gassing from soil water (Schindlbacher et al., 2015). According to Cerling (1984), the distinct oxygen and carbon isotopic composition of soil carbonate depends primarily on the isotopic signature of meteoric water and to the proportion of C₄ biomass present at the time of carbonate formation (Cerling, 1984), but also on numerous other factors that determine the ¹³C value of soil CO₂. CO₂ released as a result from carbonates in calcareous soil site have a distinct δ¹³C value of -9.3 (mean value across soil profile 0 - 80 cm depth) (Figure 8(c)), while CO₂ released during biological respiratory processes has δ¹³C values around -24‰ as observed in the acidic soil (Figure 10 (e)). The δ¹³C values of soil CO₂ observed in the deepest soil layer in the calcareous soil site most likely indicates the presence of carbonate sources of pedogenic and geologic origin. Even though the contribution of CO₂ from abiotic sources to soil CO₂ is often considered to be low, several studies have reported significant proportions ranging between (10 - 60%) emanating from abiotic sources (Emmerich, 2003; Plestenjak et al., 2012; Rammarine et al., 2012; Serrano-Ortiz et al., 2010; Stevenson and Verburg, 2006; Tamir et al., 2011). Bowen and Beerling, (2004) showed that isotope effects associated with soil organic matter decomposition can cause a strong gradient in δ values of soil organic matter (SOM) with depth, but are not always reflected in the δ¹³C values of soil.
CO₂. We have measured soil samples for bulk soil δ¹³C, carbonate δ¹³C & δ¹⁸O values and also determined the percentage of total carbon in the soil across a depth profile of (0-80 cm) (See Figure 8). We observed an increase in δ¹³C values for bulk soil in deeper soil layers (See Figure 8 (a,c)). Moreover, also the carbonate δ¹³C values got more positive in the 60-80 cm layer. Since total organic carbon content decreases with depth it can be assumed that CO₂ derived from carbonate weathering having less negative δ¹³C more strongly contributed to the soil CO₂ (especially since we see an increase in soil CO₂ concentration with depth). This is accordance with the laser-based measurements which showed a strong increase in δ¹³C of soil CO₂ in the deepest soil layer leading us to the hypothesis that this signal is indicating a strong contribution of carbonate derived CO₂. Water content, soil CO₂ concentration and presence of organic acids or any other source of H⁺ are the major factors influencing carbonate weathering, and variations in soil CO₂ partial pressure, moisture, temperature, and pH can cause degassing of CO₂ which contributes to the soil CO₂ efflux (Schindlbacher et al., 2015; Zamanian et al., 2016). CaCO₃ solubility in pure H₂O at 25°C is 0.013 gL⁻¹, but in weak acids like carbonic acid, the solubility is increased up to five fold (Zamanian et al., 2016). The production of carbonic acid due to CO₂ dissolution will convert carbonate to bicarbonates resulting in exchange of carbon atoms between carbonates and dissolved CO₂. We assume that at our study site, the topsoil is de-carbonated due to intensive agriculture for a longer period and thus soil CO₂ there originates primarily from autotrophic and heterotrophic respiratory activity. In contrast to the deeper soil layers, where the carbonate content is high, CO₂ from carbonate weathering is assumed to be a dominating source of soil CO₂. Also, outgassing of CO₂ from the large groundwater body underneath the calcareous Gleysol might contribute to the inorganic CO₂ sources in the deeper soil as we found groundwater table to be 1-2m below the soil surface.

Relative ¹³C enrichment of the CO₂ in the topsoil (4 cm) compared to 8 cm depth is probably due to the invasive diffusion of atmospheric CO₂ which has a δ¹³C value close to -8‰ (e.g., (Levin et al., 1995)). The δ¹⁸O patterns for CO₂ between 4 and 35 cm might reflect the δ¹⁸O of soil water with stronger evaporative enrichment at the top and δ¹⁸O depletion towards deeper soil layers. In comparison, the strong ¹⁸O enrichment of soil CO₂ towards 80 cm in the calcareous Gleysol very likely reflects the ¹⁸O values of groundwater lending further support for the high contribution of CO₂ originating from the outgassing of groundwater. We, however, need then to assume that that the oxygen in the CO₂ is not in full equilibrium with the precipitation influenced soil water. As mainly microbial carbonic anhydrase mediates the fast equilibrium between CO₂ and water in the soil and the microbial activity is low in deeper soil layers (Schmidt et al., 2011), we speculate that in deep layers with a significant contribution of ground-water derived CO₂ to the CO₂ pool, a lack of full equilibration with soil water might be the reason for the observed δ¹⁸O values.

Soil CO₂ concentration in the acidic soil showed a positive relationship with soil depth as CO₂ concentration increased along with increasing soil depth (Figs. 9 & 10). CO₂ concentrations were distinctly higher than in the calcareous soil, very likely due to the finer texture than in the gravel-rich calcareous soil. δ¹³C values amounted to approx. – 26 % in 30 and 60 cm depth indicating the biotic origin from (autotrophic and heterotrophic) soil respiration (Schönwitz et al., 1986). In the topsoil, δ¹³C values did not strongly increase, pointing towards a less pronounced inward diffusion of CO₂ in the acidic soil site, most likely due to more extensive outward diffusion of soil CO₂ as indicated by the still very high CO₂ concentration at 10 cm creating a sharp gradient between soil and atmosphere. Moreover, the acidic soil was rather dense and contained no stones, strongly suggesting that gas
diffusivity was rather small. δ^{18}O depths patterns of soil CO$_2$ in the acidic soil were most likely reflecting δ^{18}O values of soil water as CO$_2$ became increasingly 18O depleted from top to bottom. δ^{18}O of deeper soil layers CO$_2$ (30 - 60 cm) was close to the values expected when full oxygen exchange between soil water and CO$_2$ occurred (Kato et al., 2004). Assuming an 18O fractionation of 41% between CO$_2$ and water (Brenninkmeijer et al., 1983) this would result in an expected value for CO$_2$ of $\approx -10 \pm 2\%$ vs. VPDB-CO$_2$. Corresponding results had been shown for δ^{18}O of soil CO$_2$ using similar hydrophobic gas permeable membrane tubes used when measuring δ^{18}O of soil CO$_2$ and soil water in situ (Gangi et al., 2015).

4 Conclusions

During our preliminary tests with the OA-ICOS, we found that the equipment was highly sensitive to changes in CO$_2$ concentrations. We found a non-linear response of the δ^{13}C and δ^{18}O values against changes in CO$_2$ concentration. Given the fact that laser-based CO$_2$ isotope analyzers are deployed on site in combination with different gas sampling methods like automated chambers systems (Bowling et al., 2015), and hydrophobic gas permeable membranes (Jochheim et al., 2018) for tracing various ecosystem processes, it is important to address this issue. Therefore, we developed a calibration strategy for correcting errors introduced in δ^{13}C and δ^{18}O measurements due to the sensitivity of the device against changing CO$_2$ concentrations. We found that the OA-ICOS measures stable isotopes of CO$_2$ gas samples with a precision comparable to conventional IRMS. The method described in this work for measuring CO$_2$ concentration, δ^{13}C and δ^{18}O values in soil air profiles using an OA-ICOS and hydrophobic gas permeable tubes are promising and can be applied for soil CO$_2$ flux studies. As this set up is capable of measuring continuously for longer time periods at higher temporal resolution (0.05 – 0.1 Hz), it offers greater potential to investigate the isotopic identity of CO$_2$ and the interrelation between soil CO$_2$ and soil water. By using our measurement setup, we could identify abiotic as well as biotic contributions to the soil CO$_2$ in the calcareous soil. We infer that that degassing of CO$_2$ from carbonates due to weathering and evasion of CO$_2$ from groundwater may leave the soil CO$_2$ with a specific and distinct δ^{13}C signature especially when the biotic activity is rather low.

Acknowledgements

We thank Federal Ministry of Education and Research, Germany (BMBF), KIT (Karlsruhe Institute of Technology) for providing financial support for the project ENABLE-WCM (Grant Number: 02WQ1205). AG and JJ acknowledge financial support by the Swiss National Science Foundation (SNF; 31003A_159866). We thank Barbara Herbstritt, Hannes Leistert, Emil Blattmann and Jens Lange, Matthias Saurer, Alessandro Schlumpf, Lukas Bächli and Christian Poll for outstanding support in getting this project into a reality.
References

Allan, D. W., Ashby, N. and Hodge, C. C.: The Science of Timekeeping, Hewlett-Packard, 88

Schönwitz, R., Stichler, W. and Ziegler, H.: δ^{13}C values of CO$_2$ from soil respiration on sites

Table 1. Correction factor models are fitted for Diff-δ^{13}C, DF (Degrees of Freedom), AICc (Akaike information criterion) and [CO$_2$] CO$_2$ concentration in ppm

<table>
<thead>
<tr>
<th>Model Fit</th>
<th>Equation</th>
<th>R^2</th>
<th>AICc</th>
<th>DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponential</td>
<td>$Diff - \delta^{13}C = a \times (b - \exp(-c \times [CO_2]))$</td>
<td>0.99</td>
<td>-294.6</td>
<td>54</td>
</tr>
<tr>
<td>Polynomial</td>
<td>$Diff - \delta^{13}C = a + b \times [CO_2] + c/[CO_2]^2$</td>
<td>0.98</td>
<td>-27.56</td>
<td>54</td>
</tr>
<tr>
<td>Logarithmic</td>
<td>$Diff - \delta^{13}C = a + b \times \ln([CO_2])$</td>
<td>0.89</td>
<td>91.68</td>
<td>55</td>
</tr>
<tr>
<td>Lowess</td>
<td>------</td>
<td>0.99</td>
<td>-170.24</td>
<td>54</td>
</tr>
</tbody>
</table>
Table 2. Correction factor models are fitted for Diff-δ^{18}O, DF (Degrees of Freedom), AIC$_C$ (Akaike information criterion) and [CO$_2$] CO$_2$ concentration in ppm.

<table>
<thead>
<tr>
<th>Model Fit</th>
<th>Equation</th>
<th>R^2</th>
<th>AIC$_C$</th>
<th>DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>$Diff - \delta^{18}O = a \cdot (b^{[CO_2]}) \cdot ([CO_2]^c)$</td>
<td>0.99</td>
<td>-337.04</td>
<td>51</td>
</tr>
<tr>
<td>Polynomial</td>
<td>$Diff - \delta^{18}O = (a + b \cdot x)/(1 + c \cdot [CO_2] + d \cdot [CO_2]^2)$</td>
<td>0.98</td>
<td>-19.34</td>
<td>50</td>
</tr>
<tr>
<td>Stein-Hart</td>
<td>$Diff - \delta^{18}O = 1/a + (b \cdot ln[CO_2]) + (c \cdot (ln[CO_2]^3))$</td>
<td>0.96</td>
<td>29.77</td>
<td>51</td>
</tr>
<tr>
<td>Lowess</td>
<td>------</td>
<td>0.78</td>
<td>128.66</td>
<td>51</td>
</tr>
</tbody>
</table>
Table 3. Parameter values for correction factor model fit for Diff-δ13C & Diff-δ18O.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Std Error</th>
<th>95% Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>a13C</td>
<td>31.007</td>
<td>0.2149</td>
<td>30.57 - 31.43</td>
</tr>
<tr>
<td>b13C</td>
<td>0.713</td>
<td>0.002376</td>
<td>0.708995 - 0.718522</td>
</tr>
<tr>
<td>c13C</td>
<td>0.000043</td>
<td>0.000000</td>
<td>0.000042 - 0.000043</td>
</tr>
<tr>
<td>a18O</td>
<td>0.85</td>
<td>0.003</td>
<td>0.8455 – 0.8576</td>
</tr>
<tr>
<td>b18O</td>
<td>0.99</td>
<td>0.00</td>
<td>0.999928 – 0.9999283</td>
</tr>
<tr>
<td>c18O</td>
<td>0.477</td>
<td>0.0047</td>
<td>0.476871 – 0.478767</td>
</tr>
</tbody>
</table>
Figure 2: Installation made for soil air CO₂ [ppm], δ¹³C-CO₂ and δ¹⁸O-CO₂ measurements using an Off-Axis integrated cavity output spectrometer (OA-ICOS). Hydrophobic membrane tubing were installed horizontally in soil at different depths. MIU: multi-port inlet unit.
Figure 3: Allan deviation curve for $\delta^{13}\text{C}$ (a) and $\delta^{18}\text{O}$ (b) measurements by OA-ICOS CO$_2$ Carbon isotope analyzer (LGR CCIA-36d).
Figure 4: Variability observed in (a) δ^{13}C and (b) δ^{18}O measurements using OA-ICOS before calibration. δ^{13}C and δ^{18}O measured using OA-ICOS for Heavy Standard and Light Standard are shown as red and blue circles respectively. Actual δ^{13}C and δ^{18}O values reported after measuring by IRMS for heavy standard and light standard are shown as red and blue dashed lines respectively.
Figure 5: Mathematical models for concentration dependent drift in OA-ICOS measurements of stable isotopes of Carbon (a) and Oxygen (b) in CO₂ from IRMS measurements. Blue circles show Diff-δ¹³C (a) and Diff-δ¹⁸O (b) data points and lines represents different mathematical models fitted on the measured data.
Figure 6: Corrected (a,c) δ\(^{13}\)C and (b,d) δ\(^{18}\)O measurements by OA-ICOS CO\(_2\) Carbon isotope analyzer. δ\(^{13}\)C and δ\(^{18}\)O measured for Heavy Standard and Light Standard are shown as red and blue circles respectively. Actual δ\(^{13}\)C and δ\(^{18}\)O values reported after measuring by IRMS are shown as black dashed lines and 95% confidence intervals are shown as colored dashed lines respectively.
Figure 7: Three point Calibration lines for (a) $\delta^{13}C$ and (b) $\delta^{18}O$ measurements using OA-ICOS with 95% confidence interval.
Figure 8

Figure 8: Depth profile of (a) δ^{13}C, (b) Carbon content, (c) δ^{13}C of soil carbonate and (d) δ^{18}O of soil carbonate in calcarceous soil.
Figure 9: Time course of the evolution of soil gas CO$_2$ [ppm], δ13C and δ18O in calcareous (a,c,e) and acidic (b,d,f) soils. Data collected continuously over a 12 hour time frame for the calcareous soil and a 14 hour time window with intermittent data collection for the acidic soil.
Figure 10: Daily average data of soil CO₂ [ppm], δ¹³C and δ¹⁸O in calcareous (a,b,c) and acidic (d,e,f) soils across soil depth profiles.