POTENTIAL EFFECTS OF VINASSE AS A SOIL AMENDMENT TO CONTROL RUNOFF AND SOIL LOSS

Z. Hazbavi¹ and S. H. R. Sadeghi²

¹[Ph.D. Student, Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Iran, Tel +98 11 4455 3102, Fax: +98 11 4455 3909, z.hazbavi@modares.ac.ir]
²[Professor (Corresponding Author), Department of Watershed Management Engineering, Faculty of Natural Resources, Tarbiat Modares University, Iran, Tel +98 11 4455 3102, Fax: +98 11 4455 3909]

Correspondence to: S. H. R. Sadeghi (sadeghi@modares.ac.ir)

Abstract

Application of organic materials are well known as environmental practices in soil restoration, preserving soil organic matter and recovering degraded soils of arid and semiarid lands. So, the present research focused on evaluating the effectiveness of vinasse, a byproduct mainly of the sugar-ethanol industry, on soil conservation under simulated rainfall. Vinasse can be recycled as a soil amendment due to its organic matter content. Accordingly, the laboratory experiments were conducted by using 0.25 m²-experimental plots at 20% slope and rainfall intensity of 72 mm h⁻¹ with 0.5 h duration. The effect of vinasse was investigated on runoff and soil loss control. Experiments were then set up as a control (with no amendment) and three treated plots with doses of 0.5, 1, and 1.5 l m⁻² of vinasse subjected to simulated rainfall. Laboratory results indicated that vinasse at different levels could not significantly (P>0.05) decrease the runoff amount and soil loss rate in the study plots compared to untreated plots. The average amounts of minimum runoff volume and soil loss were about 3985 ml and 46 g for the study plot at 1 l m⁻² level of vinasse application. In conclusion, vinasse addition as soil amendment did not significantly affected runoff and soil loss. It is may be due to the development of a water repellency phenomena that led to a decrease in the water infiltration, following an increase in runoff volume. The increased in the runoff depth was led to reduction in soil resistance to rainfall and runoff detachments and availability of readily transportable sediments.
1 Introduction

Soil erosion is an environmental concern resulting in increased sedimentation, turbidity and levels of pollutants in adjacent water bodies (Ebisemiju, 1990; Pieri et al. 2007; Girmay et al., 2009; Bhattarai et al., 2011, Bakr et al., 2012). According to the Forest, Rangeland and Watershed Management Organization of Iran, about 150 M US dollars are annually spent on the watershed management projects implemented to prevent or to alleviate part of soil erosion related problems in the country (Sadeghi et al., 2011). It led to erosion control technologies receiving a great deal of attention to reduce soil erosion. Accordingly, soil erosion control has principal importance in soil management and conservation in developing countries like Iran (Newson, 2002; Haghjou et al., 2014). Besides that, soil management is important to crop productivity, environmental sustainability and consequently human welfare.

Covering the bare soil with an appropriate material is one of the soil management practices, which increases water infiltration and surface storage by enhancing the soil structure and porosity. The layer of residues protects the soil against erosion, inhibits weed germination, improves water retention, ameliorates physical and biological soil properties, and is a source of plant nutrients (Sheoran et al., 2010; Araujo-Junior et al., 2013; Prado et al., 2013). In addition, industrial processing of sugar cane to produce sugar and alcohol also generates residues, such as filter cake and vinasse, which have a great potential for use in agriculture as soil improvers and fertilizers (Prado et al., 2013). Meanwhile, to prevent soil loss many organic soil improvers are mainly used (Tejada et al., 2009; Rigane and Medhioub, 2011). Additionally, according to Tejada et al. (2006a, 2006b), the general increasing of biomass C in a soil can be associated to the constructive impact of organic materials on the soil physical properties. The application of animal, industrial and municipal wastes is also prevalent throughout the world as they can be an excellent source for nutrient and organic matter (Bhattarai et al., 2011). Several studies have evaluated the effects of composted organic wastes such as animal manure and sewage sludge compost on soil properties, quality and productivity, dissolved organic carbon and nitrate leaching (e.g., Adler and Sikora, 2005; Margesin et al., 2006; Bastida et al., 2007; Karami et al., 2012; Zornoza et al., 2013; Eykelbosh et al., 2015), but there are relatively few studies (e.g., Tejada and Gonzalez, 2006b; Tejada et al., 2007; Tejada and Gonzalez, 2008; Gholami et al., 2013; Cerdà et al., 2014a,b; Sadeghi et al., 2015a,b) on evaluating the effect of organic waste and residues on runoff and soil loss control.
Application of organic amendment and mulches has already been proved as a method of improving soil physical properties leading to affect runoff and soil erosion (Albaladejo et al., 2000; Cerdà and Doerr, 2008; Cerdà et al., 2014a,b). Moreover, organic amendments are increasingly being examined for their potential use in preventing soil losses (Tejada and Gonzalez, 2008). There are a variety of organic amendments for soil management and conservation, with different performance and mechanisms. In spite of that, different organic amendments, viz. cotton gin crushed compost and poultry manure, beet vinasse, sewage sludge, organic urban solid refuse, sheep manure, cow manure, rice husk, finely chopped reeds, wheat straw, licorice (root) dregs (Agassi et al., 1998; Albaladej et al., 2000; Ojeda et al., 2003; Tejada and Gonzalez, 2006b; Tejada et al., 2007; Tejada and Gonzalez, 2008; Nicolás et al., 2012; Karami et al., 2012) have been used for soil conservation in agricultural and forestry soils, commonly.

Recently, with the advances in industrial sector, significant amount of wastes and residues can be produced which create another source of load on the environment. Also, the high cost of fertilizers and concerns about environmental protection have been great incentives to study the recycling of the large quantities of organic residues produced as byproducts of the sugar and alcohol agro-industries in agriculture (Prado et al., 2013). For instance, the production of one liter of ethanol generates on average between 10-15 liters of vinasse. **Vinasse is classified as a class II residue, not inert but not dangerous.** Vinasse, like other organic fertilizers has high organic matter, N and K contents (Madejón et al., 2001), which promotes nutrient recycling in ecosystems, and causes less environmental impacts during production. Sugarcane industries generate large quantities of waste generally known as vinasses, stillages or molasses spent wash during the process of ethanol production (Espanã-Gamboa et al., 2011). **Vinasse** is an important byproduct of ethanol and sugarcane industries, intensively applied to soils in Brazil as liquid fertilizer (Ribeiro et al., 2013). However, the direct application of vinasse is constrained by its high salinity and high density of organic matter and other chemical materials. These issues can be mitigated through mixing the vinasse with other solid wastes. The environmental damage caused by discarding vinasse into the soil or running waters was an incentive to studies aiming to find alternative, economic applications for this residue. Results from such studies indicate that vinasse contributes to improvements in soil quality and agricultural productivity, if properly used (Prado et al., 2013).
et al., 2009; Jiang et al., 2010; Prado et al., 2013; Ribeiro et al., 2013), but very limited studies were taken place to study the effects of application of vinasse on surface runoff and water soil loss rate. According to previous studies (Tejada and Gonzalez, 2006a, 2007; Tejada et al., 2006a, 2007), the application of beet vinasse had unfavorable impacts on some soil properties viz. structural stability, bulk density, ESP_2, microbial biomass, respiration, enzymatic activities. Madejón et al. (2001) investigated the effect of three vinasse composts on some chemical properties of a calcareous loamy sand soil. Tejada and Gonzalez (2006b) also investigated the relations between soil erosion and erodibility (K) in a treated soil by beet vinasse (BV) applied for 5 years on a Typic Xerofluvent. They demonstrated that when BV was applied, the soil physical and biological properties were declined. The results revealed that in the BV-treated soils under a rainfall with 45 min duration and 60 mm h$^{-1}$ intensity, the K factor decreased by 6.4% at the end of the experiment compared to control soil. Their results indicated that the use of compost contributed to enhancing the level of organic matter in agricultural soils in SW Andalusia, Spain, which was particularly poor in organic matter.

Characterization of vinasses from different feedstock sources by Espanã-Gamboa et al. (2011) showed the most appropriate treatments for the vinasses soluble solids conditioning. They verified that the vinasses could be safely used in agriculture without contaminating soil, underground water or crops, for energy recovery and animal feeding.

A review of the literature demonstrated the effectiveness of different organic amendments on growth, development and production of sugarcane and soil physical properties of soil as well. However, there was no comprehensive study on evaluation of the effect of vinasse amendment on runoff and soil loss control. In recent years, soil erosion has been extensively studied in laboratory using rainfall simulators. So that, the soil erosion plots and rainfall simulators are two important research equipments employed in erosion studies, worldwide. They allow producing runoff and occurring soil loss under repeatable and controlled conditions. In addition, the employ of different sized plots is practically applicable, logically economic and easily controllable and repeatable due to which their further utilizations have been advised with particular considerations (Sadeghi et al., 2012). Researches on vinasse are in infancy stage and as such substantially more data are required before robust predictions can be made regarding the effects of vinasse application to soils, across a range of soil, climatic and land management factors. The present study therefore examines the potential role of vinasse amendment on runoff and soil loss reduction on a silt loam soil collected from a
summer rangeland, northeastern Iran using a simulated rainfall intensity of 72 mm h\(^{-1}\) and slope of 20%.

2 MATERIALS AND METHODS

2.1 Soil properties

The soil required for the study was provided from the soil surface layer (0-30 cm) from Badranlou area (57° 11' E and 37° 29' N) in Northern Khorasan Province, Iran, and transported to the laboratory. The area is mainly under dry land farming system and very prone to soil erosion. Main climatic zone of this area is a cold substeppic of Irano-Turanian zone (slight Mediterranean affinities). Annual precipitation varies between 200-230 and 450 mm. Very variable temperatures especially in winter, depending on altitude and latitude. In Iran, brown soils are common in Khorasan Province. Based on World Reference Base reports (IUSS, 2014).

The collected soil was air-dried, passed through a 2 mm-sieve and analyzed for various physicochemical properties. Soil texture was determined using the hydrometer method according to Bouyoucos (1962). Soil organic matter (SOM) obtained by multiplying total soil organic carbon by 1.724. Total soil organic carbon was measured by the Walkley and Black wet dichromate oxidation method (Nelson and Somers, 1982). The pH and electrical conductivity (EC) were determined in 1:2 soil:water suspension by pH and EC meters (Hati et al., 2007). Bulk density at air dried moisture content was measured by the Plaster (1985) method (clod method). Properties of the study surface soil (0-30 cm) are shown in Table 1.

2.2 Plot preparation

Experimental plots with 0.5 m long, 0.5 m wide, and 0.3 m deep were used for the present study. The soil was then prepared for application and simulated in the plots using previously reported methods (Thompson and Beckmann, 1959; Loch and Donnollan, 1988; Kukal and Sarkar, 2011). The upper 10 cm of the soil was compacted by concrete roller to achieve the desired bulk density of 1.3 g cm\(^{-3}\) and similar to the field conditions. To establish the filter layer under the experimental soils, three layers of mineral pumice grains with different sizes with total thickness of 17 cm were packed. Based on the annual average soil moisture content reported for the soil in the study area, the soil was also treated to contain a moisture content of 35% (Behzadfar et al., 2012; Hazbavi et al., 2013). After soil compaction, the plots were
established in water ponds for 12 h. Hence, after extracting the plots from the water ponds, the vinasse was spread over the soil surface (Hazbavi et al., 2013; Sadeghi et al., 2015 and 2016).

2.3 Vinasse characteristics
Vinasse used for the experiment was produced by Research and Training Institute for the Industrial Development of Sugarcane in Khuzestan Province, Iran. pH and EC of vinasse were determined by pH and EC meters. Organic matter determined by dry combustion method (MAPA, 1986). Calcium (Ca), potassium (K) and magnesium (Mg) were determined by atomic absorption spectrometer after nitric and perchloric acid digestion. Chemical Oxygen Demand (COD) was determined by closed reflux, colorometric method (APHA, 1998). The general properties of vinasse have been summarized in Table 2.

The levels of vinasse application (0.5, 1 and 1.5 l m⁻²) were selected based on information existed for application of vinasse for other purposes and other amendments, avoiding considerable environmental pollution due to high contents of N and K probably leading to high salinity and high density, feasibility of application and accessibility (Madejón et al., 2001; Tejada and Gonzalez, 2005, 2006a, 2006b; Tejada et al., 2007, 2009; Jiang et al. 2010; Maldonado et al., 2011). Three levels of 0.5, 1 and 1.5 l m⁻² of vinasse were sprayed on soil surface in three replications by a small manual pump and left for 24 h to increase the stability of vinasse layer on the soil surface and mimic the natural conditions. To conduct the comprehensive comparison, one control treatment (without vinasse) at three replications was also applied. Urban tap water was used for the control treatment and the experimental setup was used similar to that for vinasse treatments (Sadeghi et al., 2016).

2.4 Laboratory experiments
To evaluate the effectiveness of vinasse for runoff and soil loss control, laboratory experiments were conducted under a rainfall simulator at the Rainfall and Soil Erosion Simulation Laboratory of Faculty of Natural Resources of Tarbiat Modares University, located in Noor Campus, Mazandaran Province, Iran. The rainfall simulator consists of a 4000
L water tank and 27 precalibrated nozzles in three parallel lines designed to simulate raindrops of 1.3 mm average size. The drops fall from a height between 4 and 6 m at the upper and lower parts of the plot, respectively, reaching a 7 ms\(^{-1}\) speed (Gholami et al., 2013; Sadeghi et al., 2015a,b). The laboratory experiments were conducted at 20% slopes under simulated rainfall intensity of 72 mm h\(^{-1}\) with duration of 30 min. The rainfall intensity of 72 mm h\(^{-1}\) with duration of 30 min was considered representative of the climatological condition of the origin of the soil, obtained through intensity–duration–frequency (IDF) curves analysis for data collected from the nearest synoptic station (Bojnourd, Northern Khorasan Province in Northeast of Iran) with the return period of 50 years. The slope of 20% was selected based on the average slope of the original area where the soil was collected (Hazbavi, 2013; Hazbavi et al., 2013; Sadeghi et al., 2014). A general view of the experimental setup is shown in Fig. 1.

For each event, the time to runoff initiation was recorded as the elapsed time between the start of rainfall and the time at which surface runoff began entering the runoff collection container located at the end of the plot. Runoff was sampled at different time steps of 2 to 5 min and its volume was accordingly measured. The collection gutter at the lower end of each box was protected by a shield to prevent rainfall from directly entering the collection container. The amount of soil loss was then measured using a decantation procedure; oven-drying at 105 °C for 24 h and weighing by means of high precision scale (Gholami et al., 2013; Sadeghi et al., 2016). The runoff commencement and cessation times were also recorded. The time of runoff commencement and cessation times, and regular measurement of runoff volume were measured by a chronometer and standard gauged cylinders, respectively (Gholami et al., 2013; Sadeghi et al., 2014; Sadeghi et al., 2015a,b).

2.5 Statistical analyses

All analyses were performed on triplicate samples and subjected to analysis of variance (ANOVA). The data were tested for homogeneity of variances at a significance level of P<0.05 and probability values of less than 0.05 were then considered as statistically significant in one-way ANOVA. Significant means were subjected to analysis by Duncan’s multiple range test (P<0.05). The SPSS V.19 software package was used for the statistical analyses.

3 RESULTS AND DISCUSSION
3.1 Runoff

The variations of runoff volume with rainfall duration for various vinasse application rates are shown in Fig. 2 and Table 3. As it is seen in Fig. 2 and Table 3, the maximum and the minimum reduction in runoff generation occurred at 1 and 1.5 l m$^{-2}$ levels of vinasse application, respectively.

The average maximum and minimum runoff volumes were 18547.73 and 15940.03 ml m$^{-2}$ at 1.5 and 1 l m$^{-2}$ level of vinasse treated plots, respectively (Table 3). The ANOVA results showed that the effect of vinasse on runoff volume was not significant, which is consistent with Madejón et al. (2001) who reported that single application of vinasse did not significantly influence runoff and erosion from simulated rainfall. More runoff in 1.5 l m$^{-2}$ vinasse-treated plots in comparison with control plot verified changing effectiveness of vinasse on runoff control. It is due to water repellency phenomena, probably. The increased use of vinasse may affect water repellency and have the potential to be easily transported in surface runoff at high levels. Agassi et al. (1998) verified that the hydrophobic sound effects, which are common to a range of organic amendments, may decrease the infiltration rate in soil treated with sludge as organic amendment. This result persisted for a long time after the sludge has been used.

The runoff commencement and cessation times under different vinasse treatments are shown in Fig. 3. The runoff commencement time was recorded at the onset runoff reached plot outlet. As it is seen in Fig. 3, the addition of 1.5 l m$^{-2}$ of vinasse accelerated the runoff commencement up to 1.53 min, compared to control treatment with commencement time of 3.42 min. These results disagreed with previous studies (e.g., Gholami et al., 2013; Sadeghi et al., 2015a) showing that some organic amendments promote runoff commencement time and delaying runoff means more water infiltration. The addition of 1.5 l m$^{-2}$ of vinasse showed runoff cessation time of 31.35 min, which was delayed compared to the control treatment (30.36 min). The maximum effectiveness for both variables occurred at 1.5 l m$^{-2}$ level of vinasse application. It means lower commencement time and higher cessation time involves higher time with runoff, which is negative at reducing runoff to increase infiltration. In conclusion, vinasse addition as soil amendment did not significantly affect runoff. It may be due to the development of a water repellency phenomena that observed during the experiment times led to a decrease in the water infiltration following an increase in runoff volume. In addition, saturation of pores may be another reason to verify not significant effect of vinasse.
to decrease the runoff, since vinasse partly fills up the voids of soil, and partly remains on the soil surface.

3.2 Soil loss

Table 4 contains the specific values of average soil loss for vinasse treatments. In addition, the average values of eroded soil under different vinasse treatments under experiment conditions have been shown in Fig. 4. There was a trend showing decreased soil loss with vinasse addition, but owing to the high variability, differences were not significant. The results of ANOVA also showed that the effect of vinasse on soil loss was not significant at confidence level of 95% (P = 0.506), which agrees Madejón et al. (2001). They reported that depend upon the type, amount, size and dominant components of the added organic materials, the influence of organic matter on soil loss was different (Tejada and Gonzalez, 2006b, 2007). For instance, Tejada and Gonzalez (2005) showed that an increase in electrical conductivity caused by high vinasse application rate adversely affected soil total porosity, bulk density, and structural stability. Thus, soil physical properties could be influenced by vinasse application under different conditions from those considered in the present study such as different time scales and soil types. These changes in soil properties could have a substantial impact on runoff and soil loss from fields where vinasse had been applied. Tejada et al. (2006) found that organic amendments improved soil structure because they promoted the flocculation of clay minerals, which was important for soil particle aggregation.

Tejada et al. (2009) reported, in particular, that the fresh beet vinasse application had a negative effect on the soil physical, chemical and biological properties. They stated that the fresh beet vinasse increased soil loss and decreased plant cover because of high quantities of monovalent cations of fresh beet vinasse such as Na⁺. In soils amended with beet vinasse a degradation of soil structure and increase on erosion were observed due to the enrichment of the cation exchange capacity by monovalent cations, such as K (Tejada and Gonzalez, 2006a; Tejada et al., 2007). High saturation of K in the cation exchange capacity may lead to soil dispersion and, consequently, to soil erosion and land degradation. In addition, whenever vinasse was applied to silty loam soil, a part of them filled up the voids of soil, and other part stayed on the soil aggregates surface. The effects of vinasse might be temporary, since the organic compounds of vinasse were highly decompounded from vinasse cementing the micro aggregates and favoring the flocculation of clay fraction (Ribeiro et al., 2013).
4 Conclusions

The results of the study indicated that the single application of vinasse alone did not significantly influence runoff and erosion. Vinasse composts or mixed with other amendments can be then used as an alternative to mineral fertilizers and reduce soil erosion and water loss. Since the runoff and soil loss ratios from different plots and even under realities may be different from those obtained during the present study, further research is needed for better understanding the potential benefits and limitations of various applications of vinasse for sound management of water and soil and to allow drawing comprehensive conclusion. More and long term experiments are also needed for monitoring and evaluating long term effects of vinasse on soil hydrology and erosion processes with particular focus on environmental effects.

Acknowledgements

The authors are thankful to Professor Hassan Hamdi, the Managing Director of Research and Training Institute for the Industrial Development of Sugarcane in Khuzestan Province, Iran, for providing vinasse amendment.

References

Table 1. Main original soil characteristics (n=3)

<table>
<thead>
<tr>
<th>Soil property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil texture</td>
<td>silty loam (48% silt, 28% clay and 24% sand)</td>
</tr>
<tr>
<td>Organic matter (%)</td>
<td>0.155</td>
</tr>
<tr>
<td>pH</td>
<td>8.2</td>
</tr>
<tr>
<td>Electrical conductivity (µmhos cm⁻¹)</td>
<td>137.3</td>
</tr>
<tr>
<td>Bulk density (g cm⁻³)</td>
<td>1.3</td>
</tr>
</tbody>
</table>
Table 2. Chemical characteristics of vinasse applied in the study

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>5</td>
</tr>
<tr>
<td>Electrical conductivity (µS cm⁻¹)</td>
<td>1657</td>
</tr>
<tr>
<td>Organic matter (g kg⁻¹)</td>
<td>100</td>
</tr>
<tr>
<td>Bulk density (g cm⁻³)</td>
<td>1.11</td>
</tr>
<tr>
<td>Ca (mg kg⁻¹)</td>
<td>137.025</td>
</tr>
<tr>
<td>Mg (mg kg⁻¹)</td>
<td>154.325</td>
</tr>
<tr>
<td>Chemical oxygen demand (g kg⁻¹)</td>
<td>91.4</td>
</tr>
<tr>
<td>Moisture content (%)</td>
<td>93</td>
</tr>
</tbody>
</table>
Table 3. Average and standard deviation (Mean±SD) of runoff volume (ml) under different vinasse treatments in 0.25 m²-plot.

<table>
<thead>
<tr>
<th>Vinasse rate (l m⁻²)</th>
<th>0 (Control)</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± SD</td>
<td>18250.6±3163.6</td>
<td>16105.5±3066.2</td>
<td>15940.0±4101.9</td>
<td>18547.7±1710.5</td>
</tr>
<tr>
<td>F-value</td>
<td>0.583 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"ns", indicating non significant differences among study treatments (P> 0.05)
Table 4. Average and standard deviation (Mean±SD) of soil loss amount (g) under different vinasse treatments in study 0.25 m²-plot.

<table>
<thead>
<tr>
<th>Vinasse rate (l m⁻²)</th>
<th>0 (Control)</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean±SD</td>
<td>276.1±47.4</td>
<td>234.5±120.6</td>
<td>182.6±51.2</td>
<td>212.3±50.3</td>
</tr>
<tr>
<td>F-value</td>
<td>0.848 ns</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"ns", indicating non significant differences among study treatments (P> 0.05)
Figure 1. A general view of experimental setup at Rainfall and Soil erosion Simulation Laboratory of Tarbiat Modares University, Iran
Figure 2. Variations of runoff volume per m² area under different vinasse treatments under study conditions (rainfall intensity of 72 mm h⁻¹ and experiment duration of 30 min). Same letters indicate non significant differences among study treatments (P > 0.05).
Figure 3. Runoff commencement and cessation times variation under different vinasse treatments and under study condition (0.25 m\(^2\)-small plot, rainfall intensity of 72 mm h\(^{-1}\) and experiment duration of 30 min). Different letters indicate significant differences among study treatments (P < 0.05).
Figure 4. Variations of soil loss per m² area under different vinasse treatments under study conditions (rainfall intensity of 72 mm h⁻¹ and experiment duration of 30 min). Same letters indicate non significant differences among study treatments (P> 0.05).